bulletin of the chemical society of Japan, vol. 48(4), 1321—1322 (1975)

α,β -Unsaturated Carboxylic Acid Derivatives. VII. Reaction of Ethyl α,β Unsaturated α -Cyanocarboxylates with Triethyl or Diethyl Phosphonate¹⁾

Chung-gi Shin, Yasuchika Yonezawa, Yasuo Sekine, and Juji Yoshimura*

Laboratory of Organic Chemistry, Faculty of Technology, Kanagawa University,

Rokkakubashi, Kanagawa-ku, Yokohama 221

* Laboratory of Chemistry for Natural Products, Faculty of Science, Tokyo

Institute of Technology, Ōkayama, Meguro-ku, Tokyo 152

(Received April 16, 1974)

Synopsis. The reaction of ethyl α,β -unsaturated α -cyanocarboxylates with triethyl phosphonate gave ethyl α -cyano- β -diethoxyphosphinyl-carboxylates in about 50% yields.

In a previous paper,²⁾ we reported that the reaction of ethyl α,β -unsaturated α -nitrocarboxylates with triethyl phosphonate gave ethyl α,β -unsaturated β -diethoxyphosphinyl-carboxylates *via* unstable 3-ethoxycarbonyl-1,2,5-oxazaphospholine derivatives.

In this paper, we wish to report the reaction of ethyl α,β -unsaturated α -cyanocarboxylates (1) with triethyl or diethyl phosphonate.

Results and Discussion

When compound 1a—d (a; R=methyl, b; R=ethyl, c; R=n-propyl, d; R=i-propyl) was treated with triethyl phosphonate at room temperature for 30 min and then the mixture was heated at ca. 120 °C for 2 hr with continuous stirring, ethyl α -cyano- β -diethoxyphosphinyl-carboxylate (3a—d) was obtained in about 50% yield as a colorless oil. In the reaction of ethyl 2-cyanocinnamate (1e) with triethyl phosphonate, an adduct (2e) was obtained in a good yield. The IR spectrum of 2e showed a strong absorption of C=C=N-at 2050 cm⁻¹ (Fig. 1). The compound 2e can be repeatedly distilled (bp 152—155 °C/0.25 mmHg), but it changed gradually into 3e at room temperature over 6 months. The stability of the intermediate,

2e, is probably due to the resonance stabilization between its intramolecular phosphonium salt and phenyl group attached to the carbon atom at the 3-position. However, when a solution of 2e in cyclohexane was irradiated at room temperature for 24 hr by using an external high-pressure mercury lamp, ethyl 2-cyano-3-diethoxyphosphinyl-3-phenylpropanoate (3e) was obtained in a good yield and ethylene was liberated. The reaction seems to proceed through the compound 2 which in turn decomposes to the compound 3 and ethylene as shown in Scheme 1. The structure of 3 was confirmed by IR spectra and an independent preparation from diethyl phosphonate and 1. The physical properties of 3 were summarized in Table 1.

a:R=CH₃ b:R=C₂H₅ c:R=n-C₃H₇ d:R=i-C₃H₇ e:R=C₆H₅ Scheme 1.

Table 1. Ethyl 2-cyano-3-diethoxyphosphinyl-alkanoates (3) $\begin{pmatrix} R-CH-COOE_t \\ | \\ (EtO)_2P & C \equiv N \end{pmatrix}$

Compound R		Yield $(\%)$ $A^{a)}$ $B^{b)}$		bp °C/mmHg	Formula	Found (Calcd),			cm ⁻¹ , IR in KBr				¹ H (δ) NMR ^{e)}	
						$\hat{\mathbf{c}}$	% H	N	$-C \equiv N \\ (w)^{c)}$	-COOEt	P=O (s)	P-O-C (s)	α-H	β -H
3a	$\mathrm{CH_3}$	49	65	118—120/0.25	$\mathrm{C_{11}H_{20}NO_5P}$	47.83 (47.69	7.75 7.22	5.39 5.05)	2200	1745	1240	1020	3.77	2.65
3b	C_2H_5	35	_	118-120/0.18	$\mathrm{C_{12}H_{22}NO_5P}$	49.19 (49.14	7.75 7.76	4.64 4.81)	2200	1745	1245	1020	3.76	2.63
3c	n - $\mathrm{C_3H_7}$	36	58	120—125/0.18	$\mathrm{C_{13}H_{24}NO_{5}P}$	51.08 (51.12	7.77 7.87	4.50 4.54)	2200	1745	1245	1020	3.76	2.60
3d	i - $\mathrm{C_3H_7}$	58		124—127/0.18	$\mathrm{C_{13}H_{24}NO_5P}$	51.08 (51.12	7.75 7.87	4.49 4.54)	2200	1740	1240	1020	3.75	2.62
3е	C_6H_5	66		148—152/0.25	$\mathrm{C_{15}H_{22}NO_5P}$	54.92 (55.05	6.95 6.73	4.11 4.28)	2250	1750	1240	1020	3.55	2.39

a) From the reaction of 1 with triethyl phosphonate. b) From the reaction of 1 with diethyl phosphonate.

c) w=Weak. d) s=Strong. e) Measured in CDCl₃.

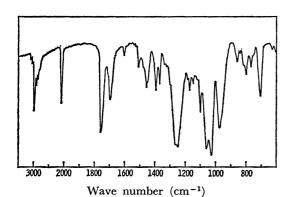


Fig. 1. IR absorption spectrum of 2e.

Experimental

All boiling points are uncorrected. The IR spectra were recorded with a Hitachi EPI-S2 Spectrometer. The NMR spectra were measured with a JNM-4H-100 Spectrometer using tetramethylsilane as an internal standard.

Material. Compound 1 was prepared by the reaction of appropriate aldehyde with ethyl cyanoacetate.^{3,4)}

Reaction of 1α -d with Triethyl Phosphonate. A mixture of 1a-d (0.05 mol) and triethyl phosphonate (0.06 mol) was stirred at room temperature for 30 min and then heated at 120-130 °C for 2 hr. The corresponding ethyl α -cyano- β -diethoxyphosphinyl- β -alkylpropanoate was obtained by distillation under reduced pressure. The physical properties are listed in Table 1.

Reaction of 1e with Triethyl Phosphonate. A mixture of

1e (0.05 mol) and triethyl phosphonate (0.1 mol) was refluxed for 5 hr. After removal of excess triethyl phosphonate, the residual syrup was distilled under reduced pressure to give an adduct (2e) (70.5%) as a colorless oil, bp 152—155 °C/0.25 mmHg. IR (KBr disk); 2050 (-C=C=N⁻), 1740 (-COOEt) and 1020 (>P-O-C<)cm⁻¹. NMR (CD-Cl₃); δ 2.40 (1H, s, $C_6H_5-CH_-C_-$).

Found: C, 58.47; H, 7.67; $\stackrel{"}{N}$, 4.12%. Calcd for C₁₈-H₂₆NO₅P: C, 58.85; H, 7.08; N, 3.81%.

Irradiation of 2e. A solution of 2e (7 g) in dry cyclohexane (90 ml) was irradiated at room temperature for 24 hr by an external high-pressure mercury lamp. After removal of cyclohexane, the residue was purified on a silica gel column using benzene-acetone (10:1 V/V). After removal of the solvent, the residual oil was distilled under reduced pressure to give a colorless oil (3e).

Reaction of 1a or 1c with Diethyl Phosphonate. A mixture of 1a (0.05 ml) and diethyl phosphonate (0.1 mol) was refluxed for about 5 hr. After removal of the excess diethyl phosphonate, the residual oil was distilled under reduced pressure to give a colorless oil (3a).

In a similar manner, 3c was obtained as a colorless oil starting from 1c with diethyl phosphonate.

References

- 1) Part VI. C. Shin, K. Nanjo, E. Ando, and J. Yoshimura, This Bulletin, 47, 3109 (1974).
- 2) C. Shin, Y. Yonezawa, and J. Yoshimura, This Bulletin, **46**, 1727 (1973).
- 3) F. D. Popp and A. Catala, *J. Org. Chem.*, **26**, 2738 (1961).
 - 4) F. D. Popp, ibid., 25, 646 (1960).